问题描述
一个正整数,如果交换高低位以后和原数相等,那么称这个数为回文数。比如 121,2332 都是回文数,134567 不是回文数。
任意一个正整数,如果其不是回文数,将该数交换高低位以后和原数相加得到一个新的数,如果新数不是回文数,重复这个变换,直到得到一个回文数为止。例如,57 变换后得到 132(57 + 75),132 得到 363(132 + 231),363 是一个回文数。
曾经有数学家猜想:对于任意正整数,经过有限次上述变换以后,一定能得出一个回文数。至今这个猜想还没有被证明是对的。现在请你通过程序来验证。
输入格式
输入一行一个正整数 n。
输出格式
输出第一行一个正整数,表示得到一个回文数的最少变换次数。
接下来一行,输出变换过程,相邻的数之间用”—>”连接。输出格式可以参见样例。
保证最后生成的数在 int 范围内。
样例输入
349
样例输出
3
349—>1292—>4213—>7337
AC代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int m[100];
int n[100];
void mycheck()
{
for(int i=99;i>=80;i--)
{
if(m[i]>=10){m[i-1]+=m[i]/10;m[i]=m[i]%10;}
}
}
int is_hui()
{
int cur1;
int cur2=99;
for(cur1=0;cur1<=99;cur1++)
{
if(m[cur1]!=0)break;
}
for(;cur1<=cur2;)
{
if(m[cur1]==m[cur2]){cur1++;cur2--;continue;}
return 0;
}
return 1;
}
void jia()
{
int cur1;
int cur2=99;
for(;cur1<=99;cur1++)
{
if(m[cur1]!=0)break;
}
for(;cur1<=cur2;)
{
m[cur1]+=m[cur2];
m[cur2]=m[cur1];
cur1++;
cur2--;
}
mycheck();
}
void pri()
{ int cur1=0;
for(;cur1<=99;cur1++)
{
if(m[cur1]!=0)break;
}
for(;cur1<100;cur1++)
{
cout<<m[cur1];
}
}
int main()
{
memset (m,0,sizeof(m));
int buf[10];
int cnt=0;
char mm;
while(scanf("%c",&mm)==1&&mm!=10)
{
buf[cnt]=mm-'0';
cnt++;
}
for(int i=0;i<cnt;i++)
{
n[100-cnt+i]=buf[i];
m[100-cnt+i]=buf[i];
}
int tm=0;
while(!is_hui())
{ tm++;
jia();
}cout<<tm<<endl;
for(int i=0;i<100;i++)
{
m[i]=n[i];
}
pri();
while(!is_hui())
{
jia();
cout<<"--->";
pri();
}
return 0;
}